Skip to main content

Refine your search

Hoitaja ja asiakas mammografiakuvauksessa.

Novel AI algorithm assists in breast cancer screening

Researchers at the University of Eastern Finland have developed a novel artificial intelligence based algorithm, MV-DEFEAT, to improve mammogram density assessment. This development holds promise for transforming radiological practices by enabling more precise diagnoses.

High breast tissue density is associated with an increased risk of breast cancer, and breast tissue density can be estimated from mammograms. The accurate assessment of mammograms is crucial for effective breast cancer screening, yet challenges such as variability in radiological evaluations and a global shortage of radiologists complicate these efforts. The MV-DEFEAT algorithm aims to address these issues by incorporating deep learning techniques that evaluate multiple mammogram views at the same time for mammogram density assessment, mirroring the decision-making process of radiologists.

The research team involved with AI in cancer research consists of Doctoral Researcher Gudhe Raju, Professor Arto Mannermaa and Senior Researcher Hamid Behravan. In the present study, they employed an innovative multi-view deep evidential fusion approach. Their method leverages elements of the Dempster-Shafer evidential theory and subjective logic to assess mammogram images from multiple views, thus providing a more comprehensive analysis.

MV-DEFEAT showed remarkable improvements over existing approaches. It demonstrates a significant improvement in mammogram screening accuracy by automatically and reliably quantifying the density and distribution of dense breast tissue within mammograms. For instance, in the public VinDr-Mammo dataset which consists of over 10,000 mammograms, the algorithm has achieved an impressive 50.78% improvement in distinguishing between benign and malignant tumours over the existing multi-view approach. 

The image below illustrates the gradient-based saliency maps predicted by the MV-DEFEAT model highlighting the relevant regions of interest and capturing the information that can assist the radiologist in the decision making process.

Mammograms from different angles and areas highlighted by the algorithm.